Open Access
Issue |
TST
Volume 13, Number 1, March 2020
|
|
---|---|---|
Page(s) | 32 - 40 | |
DOI | https://doi.org/10.1051/tst/2020131032 | |
Published online | 31 March 2020 |
- M. Tonouchi. “Cutting-edge terahertz technology”. Nature Photon., 1, 97–105 (2007). [Google Scholar]
- M. Walther, et al. “Chemical sensing and imaging with pulsed terahertz radiation”. Anal. Bioanal Chem., 397, 1009–1017 (2010) [CrossRef] [Google Scholar]
- B. Ferguson, X.C. Zhang. “Materials for terahertz science and technology”. Nat. Material, 1, 26–33 (2002). [CrossRef] [PubMed] [Google Scholar]
- S. Koenig, D. Lopez-Diaz, J. Antes, et al. “Wireless sub-THz communication system with high data rate”. Nature Photon., 7, 977–981 (2013). [CrossRef] [Google Scholar]
- https://www.vadiodes.com. [Google Scholar]
- S.G. Park, Y. Choi, Y.J. Oh, et al. “Terahertz photoconductive antenna with metal nanoislands”. Opt. Express, 20, 25530–25535 (2012). [CrossRef] [Google Scholar]
- H.M. Manohara, R. Toda, R.H. Lin, et al. “Carbon nanotube bundle array cold cathodes for THz vacuum tube sources”. Journal of Infrared, Millimeter, and Terahertz Waves, 30, 1338–1350 (2009) [Google Scholar]
- J. Faist, F. Capasso, D.L. Sivco, et al. “Quantum cascade laser”. Science, 264, 553–556 (1994). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- R. Köhler, A. Tredicucci, F. Beltram, et al. “Terahertz semiconductor-heterostructure laser”. Nature, 417, 156–159 (2002) [CrossRef] [PubMed] [Google Scholar]
- M. Brandstetter, C. Deutsch, M. Krall, et al., “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions”. Appl. Phys. Lett., 103, 171113 (2013). [CrossRef] [Google Scholar]
- L.H. Li, J.X. Zhu, L. Chen, et al. “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers”. Opt. Express, 23, 2720–2729 (2015) [CrossRef] [PubMed] [Google Scholar]
- M. Rösch, G. Scalari, M. Beck and J. Faist. “Octave-spanning semiconductor laser”. Nature Photon., 9, 42–47 (2015). [CrossRef] [Google Scholar]
- X. Wang, C. Shen, T. Jiang, et al., “High-power terahertz quantum cascade lasers with∼ 0.23 W in continuous wave mode”. AIP Advances, 6, 075210 (2016) [CrossRef] [Google Scholar]
- W.J. Wan, H. Li, J.C. Cao. “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation”. Opt. Express, 26, 980–989 (2018). [CrossRef] [Google Scholar]
- L. Xu, D. Chen, T. Itoh, et al. “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam”. Opt. Express, 24, 24117–24128 (2016). [CrossRef] [Google Scholar]
- T. Udem, R. Holzwarth and T.W. Hänsch. “Optical frequency metrology”. Nature, 416, 233–237 (2002). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- H. Li, M. Yan, W. Wan, et al. “Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation”. Advanced Science, 6, 1900460 (2019). [CrossRef] [Google Scholar]
- C. Reimer, L. Christian, et al. “Integrated frequency comb source of heralded single photons”. Opt. Express, 22, 6535–6546 (2014). [CrossRef] [PubMed] [Google Scholar]
- S.B. Papp, S.A. Diddams. “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb”. Physical Review A, 84, 053833 (2011). [CrossRef] [Google Scholar]
- A. Hugi, G. Villares, S. Blaser, et al. “Mid-infrared frequency comb based on a quantum cascade laser”. Nature, 492, 229–233 (2012). [CrossRef] [Google Scholar]
- S.A. Diddams. “The evolving optical frequency comb”. JOSA B, 27, B51–B62 (2010). [CrossRef] [Google Scholar]
- H. Li. “Semiconductor-based terahertz frequency combs”. J. Semicond., 40, 050402–050402 (2019). [CrossRef] [Google Scholar]
- T. Yasui, Y. Kabetani, E. Saneyoshi, et al. “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy”. Appl. Phys. Lett., 88, 241104 (2006). [CrossRef] [Google Scholar]
- D. Burghoff, T.Y. Kao, N. Han, et al. “Terahertz laser frequency combs”. Nature Photon., 8, 462–467 (2014). [CrossRef] [Google Scholar]
- K. Zhou, H. Li, W.J. Wan, et al. “Ridge width effect on comb operation in terahertz quantum cascade lasers”. Appl. Phys. Lett., 114, 191106 (2019). [CrossRef] [Google Scholar]
- P. Gellie, S. Barbieri, J.F. Lampin, et al. “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation”. Opt. Express, 18, 20799–20816 (2010). [CrossRef] [Google Scholar]
- H. Li, P. Laffaille, D. Gacemi, et al. “Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation”. Opt. Express, 23, 33270–33294 (2015) [CrossRef] [PubMed] [Google Scholar]
- M. Rösch, M. Beck, M.J. Süess, et al. “Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation”. Nanophotonics, 7, 237–242 (2018). [CrossRef] [Google Scholar]
- H. Li, Z.P. Li, W.J. Wan, et al. “Towards Compact and Real-Time Terahertz Dual-Comb Spectroscopy Employing a Self-Detection Scheme”. ACS Photonics, 7, 49–56 (2020). [CrossRef] [Google Scholar]
- Y. Yang, D. Burghoff, D.J. Hayton, et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 3, 499–502 (2016). [CrossRef] [Google Scholar]
- Z.P. Li, W.J. Wan, K. Zhou, et al. “On-Chip Dual-Comb Source Based on Terahertz Quantum Cascade Lasers Under Microwave Double Injection”. Phys. Rev. Appl., 12, 044068 (2019). [CrossRef] [Google Scholar]