Open Access
Volume 13, Number 1, March 2020
Page(s) 32 - 40
Published online 31 March 2020
  1. M. Tonouchi. “Cutting-edge terahertz technology”. Nature Photon., 1, 97–105 (2007). [CrossRef] [Google Scholar]
  2. M. Walther, et al. “Chemical sensing and imaging with pulsed terahertz radiation”. Anal. Bioanal Chem., 397, 1009–1017 (2010) [CrossRef] [Google Scholar]
  3. B. Ferguson, X.C. Zhang. “Materials for terahertz science and technology”. Nat. Material, 1, 26–33 (2002). [CrossRef] [PubMed] [Google Scholar]
  4. S. Koenig, D. Lopez-Diaz, J. Antes, et al. “Wireless sub-THz communication system with high data rate”. Nature Photon., 7, 977–981 (2013). [CrossRef] [Google Scholar]
  5. [Google Scholar]
  6. S.G. Park, Y. Choi, Y.J. Oh, et al. “Terahertz photoconductive antenna with metal nanoislands”. Opt. Express, 20, 25530–25535 (2012). [CrossRef] [Google Scholar]
  7. H.M. Manohara, R. Toda, R.H. Lin, et al. “Carbon nanotube bundle array cold cathodes for THz vacuum tube sources”. Journal of Infrared, Millimeter, and Terahertz Waves, 30, 1338–1350 (2009) [Google Scholar]
  8. J. Faist, F. Capasso, D.L. Sivco, et al. “Quantum cascade laser”. Science, 264, 553–556 (1994). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  9. R. Köhler, A. Tredicucci, F. Beltram, et al. “Terahertz semiconductor-heterostructure laser”. Nature, 417, 156–159 (2002) [CrossRef] [PubMed] [Google Scholar]
  10. M. Brandstetter, C. Deutsch, M. Krall, et al., “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions”. Appl. Phys. Lett., 103, 171113 (2013). [CrossRef] [Google Scholar]
  11. L.H. Li, J.X. Zhu, L. Chen, et al. “The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers”. Opt. Express, 23, 2720–2729 (2015) [CrossRef] [PubMed] [Google Scholar]
  12. M. Rösch, G. Scalari, M. Beck and J. Faist. “Octave-spanning semiconductor laser”. Nature Photon., 9, 42–47 (2015). [CrossRef] [Google Scholar]
  13. X. Wang, C. Shen, T. Jiang, et al., “High-power terahertz quantum cascade lasers with∼ 0.23 W in continuous wave mode”. AIP Advances, 6, 075210 (2016) [CrossRef] [Google Scholar]
  14. W.J. Wan, H. Li, J.C. Cao. “Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation”. Opt. Express, 26, 980–989 (2018). [CrossRef] [Google Scholar]
  15. L. Xu, D. Chen, T. Itoh, et al. “Focusing metasurface quantum-cascade laser with a near diffraction-limited beam”. Opt. Express, 24, 24117–24128 (2016). [CrossRef] [Google Scholar]
  16. T. Udem, R. Holzwarth and T.W. Hänsch. “Optical frequency metrology”. Nature, 416, 233–237 (2002). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  17. H. Li, M. Yan, W. Wan, et al. “Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation”. Advanced Science, 6, 1900460 (2019). [CrossRef] [Google Scholar]
  18. C. Reimer, L. Christian, et al. “Integrated frequency comb source of heralded single photons”. Opt. Express, 22, 6535–6546 (2014). [CrossRef] [PubMed] [Google Scholar]
  19. S.B. Papp, S.A. Diddams. “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb”. Physical Review A, 84, 053833 (2011). [CrossRef] [Google Scholar]
  20. A. Hugi, G. Villares, S. Blaser, et al. “Mid-infrared frequency comb based on a quantum cascade laser”. Nature, 492, 229–233 (2012). [CrossRef] [Google Scholar]
  21. S.A. Diddams. “The evolving optical frequency comb”. JOSA B, 27, B51–B62 (2010). [CrossRef] [Google Scholar]
  22. H. Li. “Semiconductor-based terahertz frequency combs”. J. Semicond., 40, 050402–050402 (2019). [CrossRef] [Google Scholar]
  23. T. Yasui, Y. Kabetani, E. Saneyoshi, et al. “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy”. Appl. Phys. Lett., 88, 241104 (2006). [CrossRef] [Google Scholar]
  24. D. Burghoff, T.Y. Kao, N. Han, et al. “Terahertz laser frequency combs”. Nature Photon., 8, 462–467 (2014). [CrossRef] [Google Scholar]
  25. K. Zhou, H. Li, W.J. Wan, et al. “Ridge width effect on comb operation in terahertz quantum cascade lasers”. Appl. Phys. Lett., 114, 191106 (2019). [CrossRef] [Google Scholar]
  26. P. Gellie, S. Barbieri, J.F. Lampin, et al. “Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation”. Opt. Express, 18, 20799–20816 (2010). [CrossRef] [Google Scholar]
  27. H. Li, P. Laffaille, D. Gacemi, et al. “Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation”. Opt. Express, 23, 33270–33294 (2015) [CrossRef] [PubMed] [Google Scholar]
  28. M. Rösch, M. Beck, M.J. Süess, et al. “Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation”. Nanophotonics, 7, 237–242 (2018). [CrossRef] [Google Scholar]
  29. H. Li, Z.P. Li, W.J. Wan, et al. “Towards Compact and Real-Time Terahertz Dual-Comb Spectroscopy Employing a Self-Detection Scheme”. ACS Photonics, 7, 49–56 (2020). [CrossRef] [Google Scholar]
  30. Y. Yang, D. Burghoff, D.J. Hayton, et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 3, 499–502 (2016). [CrossRef] [Google Scholar]
  31. Z.P. Li, W.J. Wan, K. Zhou, et al. “On-Chip Dual-Comb Source Based on Terahertz Quantum Cascade Lasers Under Microwave Double Injection”. Phys. Rev. Appl., 12, 044068 (2019). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.