Open Access
Issue
TST
Volume 13, Number 4, December 2020
Page(s) 135 - 148
DOI https://doi.org/10.1051/tst/2020134135
Published online 06 December 2021
  1. F. Schwierz. “Graphene transistors”. Nat. Nanotechnol, 5, 487–496 (2010). [Google Scholar]
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., “Two-dimensional gas of massless Dirac fermions in graphene”. Nature, 438, 197–200 (2005). [Google Scholar]
  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., “Electric field effect in atomically thin carbon films”. Science, 306, 666–669 (2004). [Google Scholar]
  4. C. Berger, Z. Song, T. Li, et al., “Ultrathin epitaxial graphite : 2D electron gas properties and a route toward graphene-based nanoelectronics”. J. Phys. Chem. B, 108, 19912–19916 (2004). [Google Scholar]
  5. R. Cheng, J. Bai, L. Liao, et al., “High-frequency self-aligned graphene transistors with transferred gate stacks”. Proc. Natl. Acad. Sci. U. S. A., 109, 11588–11592 (2012). [Google Scholar]
  6. X. Li, W. Cai, J. An, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils”. Science, 324, 1312–1314 (2009). [Google Scholar]
  7. S. Ryu, L. Liu, S. Berciaud, et al., “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate”. Nano Lett, 10, 4944–4951 (2010). [Google Scholar]
  8. G. Jnawali, Y. Rao, H. Yan, et al., “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation”. Nano Lett, 13, 524–530 (2013). [Google Scholar]
  9. A.C. Ferrari, J.C. Meyer, V. Scardaci, et al., “Raman spectrum of graphene and graphene layers”. Phys. Rev. Lett, 97, 187401 (2006). [Google Scholar]
  10. A.C. Ferrari. “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”. Solid State Commun, 143, 47–57 (2007). [Google Scholar]
  11. Y. Hao, M.S. Bharathi, L. Wang, et al., “The role of surface oxygen in the growth of large single-crystal graphene on copper”. Science, 342, 720–723 (2013). [Google Scholar]
  12. S. Tani, F. Blanchard, Tanaka, K. “Ultrafast carrier dynamics in graphene under a high electric field”. Phys. Rev. Lett, 109, 166603 (2012). [Google Scholar]
  13. H.Y. Hwang, N.C. Brandt, H. Farhat, et al., “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene”. J. Phys. Chem. B, 117, 15819–15824 (2013). [Google Scholar]
  14. Z. Mics, K.-J. Tielrooij, K. Parvez, et al., “Thermodynamic picture of ultrafast charge transport transport in graphene”. Nat. Commun. doi:10.1038/ncomms8655 (2015. [Google Scholar]
  15. T. Kampfrath, K. Tanaka, K.A. Nelson. “Resonant and nonresonant control over matter and light by intense terahertz transients”. Nat. Photonics, 7, 680–690 (2013). [Google Scholar]
  16. R. Ulbricht, E. Hendry, J. Shan, et al., “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy”. Rev. Mod. Phys, 83, 543–586 (2011). [Google Scholar]
  17. K.-L. Yeh, M.C. Hoffmann, J. Hebling, et al., “Generation of 10 \mu J ultrashort terahertz pulses by optical rectification”. Appl. Phys. Lett., 90, 171121 (2007). [Google Scholar]
  18. H. Hirori, A. Doi, F. Blanchard, et al., “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3”. Appl. Phys. Lett., 98, 091106 (2011). [Google Scholar]
  19. M.J. Paul, Y.C. Chang, Z.J. Thompson, et al., “High-field terahertz response of graphene”. New J. Phys, 15, 085019 (2013). [Google Scholar]
  20. M.C. Hoffmann, D. Turchinovich. “Semiconductor saturable absorbers for ultrafast terahertz signals”. Appl. Phys. Lett, 96, 151110 (2010). [Google Scholar]
  21. F. Blanchard, D. Golde, F. Su, L. Razzari, et al., “Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast terahertz pump-probe techniques”. Phys. Rev. Lett, 107, 107401 (2011). [Google Scholar]
  22. D. Turchinovich, J.M. Hvam, M.C. Hoffmann. “Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor”. Phys. Rev. B, 85, 201304 (2012). [Google Scholar]
  23. F. Schwierz. “Graphene transistors: status, prospects, and problems”. Proc. IEEE, 101, 1567–1584 (2013). [Google Scholar]
  24. R.R. Nair, P. Blake, A. N. Grigorenko, et al., “Fine structure constant defines visual transparency of graphene”. Science, 320, 1308 (2008). [Google Scholar]
  25. K.J. Tielrooij, J.C.W. Song, S.A. Jensen, et al., “Photoexcitation cascade and multiple hot-carrier generation in graphene”. Nat. Phys., 9, 248–252 (2013). [Google Scholar]
  26. J.C.W. Song, K.J. Tielrooij, F.H.L. Koppens, et al., “Photoexcited carrier dynamics and impact-excitation cascade in graphene”. Phys. Rev. B, 87, 155429 (2013). [Google Scholar]
  27. J.C. Johannsen, S. Ulstrup, F. Cilento, et al., “Direct view of hot carrier dynamics in graphene”. Phys. Rev. Lett., 111, 027403 (2013). [Google Scholar]
  28. I. Gierz, Petersen, J.C., M. Mitrano, et al., “Snapshots of non-equilibrium Dirac carrier distributions in graphene”. Nat. Mater, 12, 1119–1124 (2013). [Google Scholar]
  29. S.A. Jensen, Z. Mics, I. Ivanov, et al., “Competing ultrafast energy relaxation pathways in photoexcited graphene”. Nano Lett, 14, 5839–5845 (2014). [Google Scholar]
  30. S. Das Sarma, S. Adam, E.H. Hwang, et al., “Electronic transport in two-dimensional graphene”. Rev. Mod. Phys., 83, 407–470 (2011). [Google Scholar]
  31. N.W. Ashcroft and N.D. Mermin Solid State Physics (Brooks/Cole 1976). [Google Scholar]
  32. A.H. Castro Neto, F. Guinea, N.M.R. Peres, et al., “The electronic properties of graphene”. Rev. Mod. Phys., 81, 109–162 (2009). [Google Scholar]
  33. T. Hallam, A. Shakouri, E. Poliani, et al., “Controlled folding of Graphene: GraFold Printing”. Nano Lett., 15, 857–863 (2014). [Google Scholar]
  34. S.A. Jensen, R. Ulbricht, A. Narita, et al., “Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes”. Nano Lett., 13, 5925–5930 (2013). [Google Scholar]
  35. A. Narita, X. Feng, Y. Hernandez, et al., “Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons”. Nat. Chem, 6, 126–32 (2014). [Google Scholar]
  36. N. Smith. “Classical generalization of the Drude formula for the optical conductivity”. Phys. Rev. B, 64, 155106 (2001). [Google Scholar]
  37. E. Hendry, J. Schins, L. Candeias, et al., “Efficiency of Exciton and Charge Carrier Photogeneration in a Semiconducting Polymer”. Phys. Rev. Lett., 92, 196601 (2004). [Google Scholar]
  38. Z. Jin, Gehrig, D., C. Dyer-Smith, et al., “Ultrafast Terahertz Photoconductivity of Photovoltaic Polymer − Fullerene Blends: A Comparative Study Correlated with Photovoltaic Device Performance”. J. Phys. Chem. Lett, 5, 3662–3668 (2014). [Google Scholar]
  39. M. Mittendorff, S. Winnerl, J. Kamann, et al., “Ultrafast graphene-based broadband THz detector”. Appl. Phys. Lett., 103, 021113 (2013). [Google Scholar]
  40. X. Cai, A.B. Sushkov, R.J. Suess, et al., “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene”. Nat. Nanotechnol, 9, 814–819 (2014). [Google Scholar]
  41. N.M. Gabor, J.C.W. Song, Q. Ma, et al., “Hot carrier-assisted intrinsic photoresponse in graphene”. Science, 334, 648–652 (2011). [Google Scholar]
  42. M.C. Hoffmann, B.S. Monozon, D. Livshits, et al., “Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots”. Appl. Phys. Lett, 97, 231108 (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.