Open Access
Issue
TST
Volume 13, Number 4, December 2020
Page(s) 135 - 148
DOI https://doi.org/10.1051/tst/2020134135
Published online 06 December 2021
  1. F. Schwierz. “Graphene transistors”. Nat. Nanotechnol, 5, 487–496 (2010). [Google Scholar]
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., “Two-dimensional gas of massless Dirac fermions in graphene”. Nature, 438, 197–200 (2005). [Google Scholar]
  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., “Electric field effect in atomically thin carbon films”. Science, 306, 666–669 (2004). [Google Scholar]
  4. C. Berger, Z. Song, T. Li, et al., “Ultrathin epitaxial graphite : 2D electron gas properties and a route toward graphene-based nanoelectronics”. J. Phys. Chem. B, 108, 19912–19916 (2004). [Google Scholar]
  5. R. Cheng, J. Bai, L. Liao, et al., “High-frequency self-aligned graphene transistors with transferred gate stacks”. Proc. Natl. Acad. Sci. U. S. A., 109, 11588–11592 (2012). [Google Scholar]
  6. X. Li, W. Cai, J. An, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils”. Science, 324, 1312–1314 (2009). [Google Scholar]
  7. S. Ryu, L. Liu, S. Berciaud, et al., “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate”. Nano Lett, 10, 4944–4951 (2010). [Google Scholar]
  8. G. Jnawali, Y. Rao, H. Yan, et al., “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation”. Nano Lett, 13, 524–530 (2013). [Google Scholar]
  9. A.C. Ferrari, J.C. Meyer, V. Scardaci, et al., “Raman spectrum of graphene and graphene layers”. Phys. Rev. Lett, 97, 187401 (2006). [Google Scholar]
  10. A.C. Ferrari. “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”. Solid State Commun, 143, 47–57 (2007). [Google Scholar]
  11. Y. Hao, M.S. Bharathi, L. Wang, et al., “The role of surface oxygen in the growth of large single-crystal graphene on copper”. Science, 342, 720–723 (2013). [Google Scholar]
  12. S. Tani, F. Blanchard, Tanaka, K. “Ultrafast carrier dynamics in graphene under a high electric field”. Phys. Rev. Lett, 109, 166603 (2012). [Google Scholar]
  13. H.Y. Hwang, N.C. Brandt, H. Farhat, et al., “Nonlinear THz conductivity dynamics in P-type CVD-grown graphene”. J. Phys. Chem. B, 117, 15819–15824 (2013). [Google Scholar]
  14. Z. Mics, K.-J. Tielrooij, K. Parvez, et al., “Thermodynamic picture of ultrafast charge transport transport in graphene”. Nat. Commun. doi:10.1038/ncomms8655 (2015. [Google Scholar]
  15. T. Kampfrath, K. Tanaka, K.A. Nelson. “Resonant and nonresonant control over matter and light by intense terahertz transients”. Nat. Photonics, 7, 680–690 (2013). [Google Scholar]
  16. R. Ulbricht, E. Hendry, J. Shan, et al., “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy”. Rev. Mod. Phys, 83, 543–586 (2011). [Google Scholar]
  17. K.-L. Yeh, M.C. Hoffmann, J. Hebling, et al., “Generation of 10 \mu J ultrashort terahertz pulses by optical rectification”. Appl. Phys. Lett., 90, 171121 (2007). [Google Scholar]
  18. H. Hirori, A. Doi, F. Blanchard, et al., “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3”. Appl. Phys. Lett., 98, 091106 (2011). [Google Scholar]
  19. M.J. Paul, Y.C. Chang, Z.J. Thompson, et al., “High-field terahertz response of graphene”. New J. Phys, 15, 085019 (2013). [Google Scholar]
  20. M.C. Hoffmann, D. Turchinovich. “Semiconductor saturable absorbers for ultrafast terahertz signals”. Appl. Phys. Lett, 96, 151110 (2010). [Google Scholar]
  21. F. Blanchard, D. Golde, F. Su, L. Razzari, et al., “Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast terahertz pump-probe techniques”. Phys. Rev. Lett, 107, 107401 (2011). [Google Scholar]
  22. D. Turchinovich, J.M. Hvam, M.C. Hoffmann. “Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor”. Phys. Rev. B, 85, 201304 (2012). [Google Scholar]
  23. F. Schwierz. “Graphene transistors: status, prospects, and problems”. Proc. IEEE, 101, 1567–1584 (2013). [Google Scholar]
  24. R.R. Nair, P. Blake, A. N. Grigorenko, et al., “Fine structure constant defines visual transparency of graphene”. Science, 320, 1308 (2008). [Google Scholar]
  25. K.J. Tielrooij, J.C.W. Song, S.A. Jensen, et al., “Photoexcitation cascade and multiple hot-carrier generation in graphene”. Nat. Phys., 9, 248–252 (2013). [Google Scholar]
  26. J.C.W. Song, K.J. Tielrooij, F.H.L. Koppens, et al., “Photoexcited carrier dynamics and impact-excitation cascade in graphene”. Phys. Rev. B, 87, 155429 (2013). [Google Scholar]
  27. J.C. Johannsen, S. Ulstrup, F. Cilento, et al., “Direct view of hot carrier dynamics in graphene”. Phys. Rev. Lett., 111, 027403 (2013). [Google Scholar]
  28. I. Gierz, Petersen, J.C., M. Mitrano, et al., “Snapshots of non-equilibrium Dirac carrier distributions in graphene”. Nat. Mater, 12, 1119–1124 (2013). [Google Scholar]
  29. S.A. Jensen, Z. Mics, I. Ivanov, et al., “Competing ultrafast energy relaxation pathways in photoexcited graphene”. Nano Lett, 14, 5839–5845 (2014). [Google Scholar]
  30. S. Das Sarma, S. Adam, E.H. Hwang, et al., “Electronic transport in two-dimensional graphene”. Rev. Mod. Phys., 83, 407–470 (2011). [Google Scholar]
  31. N.W. Ashcroft and N.D. Mermin Solid State Physics (Brooks/Cole 1976). [Google Scholar]
  32. A.H. Castro Neto, F. Guinea, N.M.R. Peres, et al., “The electronic properties of graphene”. Rev. Mod. Phys., 81, 109–162 (2009). [Google Scholar]
  33. T. Hallam, A. Shakouri, E. Poliani, et al., “Controlled folding of Graphene: GraFold Printing”. Nano Lett., 15, 857–863 (2014). [Google Scholar]
  34. S.A. Jensen, R. Ulbricht, A. Narita, et al., “Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes”. Nano Lett., 13, 5925–5930 (2013). [Google Scholar]
  35. A. Narita, X. Feng, Y. Hernandez, et al., “Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons”. Nat. Chem, 6, 126–32 (2014). [Google Scholar]
  36. N. Smith. “Classical generalization of the Drude formula for the optical conductivity”. Phys. Rev. B, 64, 155106 (2001). [Google Scholar]
  37. E. Hendry, J. Schins, L. Candeias, et al., “Efficiency of Exciton and Charge Carrier Photogeneration in a Semiconducting Polymer”. Phys. Rev. Lett., 92, 196601 (2004). [Google Scholar]
  38. Z. Jin, Gehrig, D., C. Dyer-Smith, et al., “Ultrafast Terahertz Photoconductivity of Photovoltaic Polymer − Fullerene Blends: A Comparative Study Correlated with Photovoltaic Device Performance”. J. Phys. Chem. Lett, 5, 3662–3668 (2014). [Google Scholar]
  39. M. Mittendorff, S. Winnerl, J. Kamann, et al., “Ultrafast graphene-based broadband THz detector”. Appl. Phys. Lett., 103, 021113 (2013). [Google Scholar]
  40. X. Cai, A.B. Sushkov, R.J. Suess, et al., “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene”. Nat. Nanotechnol, 9, 814–819 (2014). [Google Scholar]
  41. N.M. Gabor, J.C.W. Song, Q. Ma, et al., “Hot carrier-assisted intrinsic photoresponse in graphene”. Science, 334, 648–652 (2011). [Google Scholar]
  42. M.C. Hoffmann, B.S. Monozon, D. Livshits, et al., “Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots”. Appl. Phys. Lett, 97, 231108 (2010). [Google Scholar]