Open Access
Issue
TST
Volume 14, Number 2, June 2021
Page(s) 44 - 51
DOI https://doi.org/10.1051/tst/2021142044
Published online 06 December 2021
  1. S. Fan, B.S.Y. Ung, E.P.J. Parrott, et al., “In vivo terahertz reflection imaging of human scars during and after the healing process”. J. Biophotonics, 10, 1143–1151 (2017). [Google Scholar]
  2. Q. Sun, K. Liu, X. Chen, et al., “Utilizing multilayer structures to enhance terahertz characterization of thin films ranging from aqueous solutions to histology slides”. Opt. Lett., 44, 2149–2152 (2019). [Google Scholar]
  3. J.D. Buron. “Graphene mobility mapping”. Sci. Rep., 5 1–7 (2015). [CrossRef] [Google Scholar]
  4. Q. Sun. “Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in Situ Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites”. J. Phys. Chem. C, 122, 17552–17558 (2018). [Google Scholar]
  5. S. Fan, M.T. Ruggiero, Z. Song, et al., “Correlation between saturated fatty acid chain-length and intermolecular forces determined with terahertz spectroscopy”. Chemi. Commun., 55, 3670–3673 (2019). [Google Scholar]
  6. D. Markl. “Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging”. Pharm. Res., 34, 1037–1052 (2017). [Google Scholar]
  7. T. Nagatsuma, G. Ducournau and C.C. Renaud. “Advances in terahertz communications accelerated by photonics”. Nat. Photon., 10, 371–379 (2016). [Google Scholar]
  8. Y. Zhang. “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure”. Nano Lett., 15, 3501–3506 (2015). [Google Scholar]
  9. Y. Zhao. “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures”. ACS Photonics, 5, 3040–3050 (2018). [Google Scholar]
  10. Y. Zhao. “High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface”. Nano Lett., 19, 7588–7597 (2019). [Google Scholar]
  11. S.J. Kindness. “A Terahertz Chiral Metamaterial Modulator”. Adv. Opt. Mater., 8, 2000581 (2020). [Google Scholar]
  12. K.S. Novoselov. “Electric field effect in atomically thin carbon films”. Science, 306, 666–669 (2004). [Google Scholar]
  13. P. Tassin, T. Koschny, C.M. Soukoulis. “Graphene for terahertz applications”. Science, 341, 620–621 (2013). [Google Scholar]
  14. N. Rouhi. “Terahertz graphene optics”. Nano Res., 5, 667–678 (2012). [Google Scholar]
  15. B. Sensale-Rodriguez. “Broadband graphene terahertz modulators enabled by intraband transitions”. Nat. commun., 3 780–787 (2012). [Google Scholar]
  16. W. Gao. “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures”. Nano Lett., 14, 1242–1248 (2014). [Google Scholar]
  17. R. Degl’Innocenti. “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas”. ACS Photonics, 3, 464–470 (2016). [Google Scholar]
  18. R. Degl’Innocenti. “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene”. ACS Nano, 8 2548–2554 (2014). [Google Scholar]
  19. X. Liu, Z. Chen, E.P. Parrott, et al., “Graphene based terahertz light modulator in total internal reflection geometry”. Adv. Opt. Mater., 5, 1600697 (2017). [Google Scholar]
  20. Y. Sun. “Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry”. Photon. Res., 6, 1151–1157 (2018). [Google Scholar]
  21. A. Novitsky, A.M. Ivinskaya, M. Zalkovskij, et al., “Non-resonant terahertz field enhancement in periodically arranged nanoslits”. J. Appl. Phys., 112, 074318 (2012). [Google Scholar]
  22. C.M. Watts. “Terahertz compressive imaging with metamaterial spatial light modulators”. Nat. Photon., 8 605–609 (2014). [Google Scholar]
  23. B. Sensale-Rodriguez. “Terahertz imaging employing graphene modulator arrays”. Opt. Express, 21, 2324–2330 (2013). [Google Scholar]
  24. B. Lee. “Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices”. Appl. Phys. Lett., 97, 3107 (2010). [Google Scholar]