Open Access
Issue |
TST
Volume 14, Number 2, June 2021
|
|
---|---|---|
Page(s) | 44 - 51 | |
DOI | https://doi.org/10.1051/tst/2021142044 | |
Published online | 06 December 2021 |
- S. Fan, B.S.Y. Ung, E.P.J. Parrott, et al., “In vivo terahertz reflection imaging of human scars during and after the healing process”. J. Biophotonics, 10, 1143–1151 (2017). [Google Scholar]
- Q. Sun, K. Liu, X. Chen, et al., “Utilizing multilayer structures to enhance terahertz characterization of thin films ranging from aqueous solutions to histology slides”. Opt. Lett., 44, 2149–2152 (2019). [Google Scholar]
- J.D. Buron. “Graphene mobility mapping”. Sci. Rep., 5 1–7 (2015). [CrossRef] [Google Scholar]
- Q. Sun. “Highly Sensitive Terahertz Thin-Film Total Internal Reflection Spectroscopy Reveals in Situ Photoinduced Structural Changes in Methylammonium Lead Halide Perovskites”. J. Phys. Chem. C, 122, 17552–17558 (2018). [Google Scholar]
- S. Fan, M.T. Ruggiero, Z. Song, et al., “Correlation between saturated fatty acid chain-length and intermolecular forces determined with terahertz spectroscopy”. Chemi. Commun., 55, 3670–3673 (2019). [Google Scholar]
- D. Markl. “Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging”. Pharm. Res., 34, 1037–1052 (2017). [Google Scholar]
- T. Nagatsuma, G. Ducournau and C.C. Renaud. “Advances in terahertz communications accelerated by photonics”. Nat. Photon., 10, 371–379 (2016). [Google Scholar]
- Y. Zhang. “Gbps Terahertz External Modulator Based on a Composite Metamaterial with a Double-Channel Heterostructure”. Nano Lett., 15, 3501–3506 (2015). [Google Scholar]
- Y. Zhao. “Dynamic Photoinduced Controlling of the Large Phase Shift of Terahertz Waves via Vanadium Dioxide Coupling Nanostructures”. ACS Photonics, 5, 3040–3050 (2018). [Google Scholar]
- Y. Zhao. “High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface”. Nano Lett., 19, 7588–7597 (2019). [Google Scholar]
- S.J. Kindness. “A Terahertz Chiral Metamaterial Modulator”. Adv. Opt. Mater., 8, 2000581 (2020). [Google Scholar]
- K.S. Novoselov. “Electric field effect in atomically thin carbon films”. Science, 306, 666–669 (2004). [Google Scholar]
- P. Tassin, T. Koschny, C.M. Soukoulis. “Graphene for terahertz applications”. Science, 341, 620–621 (2013). [Google Scholar]
- N. Rouhi. “Terahertz graphene optics”. Nano Res., 5, 667–678 (2012). [Google Scholar]
- B. Sensale-Rodriguez. “Broadband graphene terahertz modulators enabled by intraband transitions”. Nat. commun., 3 780–787 (2012). [Google Scholar]
- W. Gao. “High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures”. Nano Lett., 14, 1242–1248 (2014). [Google Scholar]
- R. Degl’Innocenti. “Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas”. ACS Photonics, 3, 464–470 (2016). [Google Scholar]
- R. Degl’Innocenti. “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene”. ACS Nano, 8 2548–2554 (2014). [Google Scholar]
- X. Liu, Z. Chen, E.P. Parrott, et al., “Graphene based terahertz light modulator in total internal reflection geometry”. Adv. Opt. Mater., 5, 1600697 (2017). [Google Scholar]
- Y. Sun. “Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry”. Photon. Res., 6, 1151–1157 (2018). [Google Scholar]
- A. Novitsky, A.M. Ivinskaya, M. Zalkovskij, et al., “Non-resonant terahertz field enhancement in periodically arranged nanoslits”. J. Appl. Phys., 112, 074318 (2012). [Google Scholar]
- C.M. Watts. “Terahertz compressive imaging with metamaterial spatial light modulators”. Nat. Photon., 8 605–609 (2014). [Google Scholar]
- B. Sensale-Rodriguez. “Terahertz imaging employing graphene modulator arrays”. Opt. Express, 21, 2324–2330 (2013). [Google Scholar]
- B. Lee. “Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices”. Appl. Phys. Lett., 97, 3107 (2010). [Google Scholar]