Open Access
Issue |
TST
Volume 13, Number 3, September 2020
|
|
---|---|---|
Page(s) | 90 - 111 | |
DOI | https://doi.org/10.1051/tst/2020133090 | |
Published online | 06 December 2021 |
- K.R. Chu. “The electron cyclotron maser”. Rev. Mod. Phys., 76, 2, 489–540 (May, 2004), doi:10.1103/RevModPhys.76.489. [Google Scholar]
- G.G. Denisov, V.L. Bratman, A.D.R. Phelps, et al., “Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth”. IEEE Trans. Plasma Sci., 26, 3, 508–518 (1998), doi:10.1109/27.700785. [Google Scholar]
- W. He, C.R. Donaldson, L. Zhang, et al., “High Power Wideband Gyrotron Backward Wave Oscillator Operating towards the Terahertz Region”. Phys. Rev. Lett., 110, 16, 165101 (2013) , doi:10.1103/PhysRevLett.110.165101. [Google Scholar]
- W. He, et al., “Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide”. Appl. Phys. Lett., 89, 9, 091504 (2006), doi:10.1063/1.2345607. [Google Scholar]
- G.G. Denisov, et al., “Gyrotron Traveling Wave Amplifier with a Helical Interaction Waveguide”. Phys. Rev. Lett., 81, 25, 5680–5683 (Dec, 1998), doi:10.1103/PhysRevLett.81.5680. [Google Scholar]
- V.L. Bratman, et al., “High-Gain Wide-Band Gyrotron Traveling Wave Amplifier with a Helically Corrugated Waveguide”. Phys. Rev. Lett., 84, 12, 2746–2749 (2000), doi:10.1103/PhysRevLett.84.2746. [Google Scholar]
- W. He, C.R. Donaldson, L. Zhang, et al., “Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region”. Phys. Rev. Lett., 119, 18, 184801 (Oct, 2017), doi:10.1103/PhysRevLett.119.184801. [Google Scholar]
- L. Zhang, et al., “Experimental Study of Microwave Pulse Compression Using a Five-Fold Helically Corrugated Waveguide”. IEEE Trans. Microwave TheoryTechn., 63, 3, 1090–1096 (2015). doi:10.1109/TMTT.2015.2393882. [Google Scholar]
- S.V. Samsonov, et al., “Compression of Frequency-Modulated Pulses using Helically Corrugated Waveguides and Its Potential for Generating Multigigawatt rf Radiation”. Phys. Rev. Lett., 92, 11 (Mar, 2004), doi:10.1103/PhysRevLett.92.118301. [Google Scholar]
- V.L. Bratman, et al., “Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor”. Physics of Plasmas, 17, Art no 11 (Nov 2010), doi:10.1063/1.3505825. [Google Scholar]
- S.V. Kuzikov, A.V. Savilov, A.A. Vikharev “Flying radio frequency undulator”. Appl. Phys. Lett., 105, 3, 033504, 2014/07/21 (2014), doi:10.1063/1.4890586. [Google Scholar]
- L. Zhang, W. He, J. Clarke, et al., “Systematic study of a corrugated waveguide as a microwave undulator”. Journal of Synchrotron Radiation, 26, 1, 1 (2019). doi:10.1107/S1600577518014297. [Google Scholar]
- P.-K.L. Chao-Hai Du Millimeter-Wave, Gyrotron Traveling-Wave Tube Amplifiers. Springer, Berlin, Heidelberg (2014). [Google Scholar]
- K.R. Chu, et al., “Ultrahigh Gain Gyrotron Traveling Wave Amplifier”, Phys. Rev. Lett., 81, 21, 4760–4763 (1998). [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.81.4760 [Google Scholar]
- E.A. Nanni, S.M. Lewis, M.A. Shapiro, et al., “Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier”, Phys. Rev. Lett., 111, 23, 235101 (2013). doi:10.1103/PhysRevLett.111.235101. [Google Scholar]
- J.X. Wang, et al., “Simulation and Experiment of a Ku-Band Gyro-TWT”. IEEE Trans. Electron Devices, 61, 6, 1818–1823 (Jun 2014), doi:10.1109/ted.2013.2296552. [Google Scholar]
- S.V. Samsonov, et al., “Ka-Band Gyrotron Traveling-Wave Tubes With the Highest Continuous-Wave and Average Power”. IEEE Trans. Electron Devices, 61, 12, 4264–4267 (2014), doi:10.1109/TED.2014.2364623. [Google Scholar]
- S.V. Samsonov, et al., “CW Ka-Band Kilowatt-Level Helical-Waveguide Gyro-TWT”. IEEE Trans. Electron Devices, 59, 8 2250–2255 (2012). doi:10.1109/TED.2012.2196703. [Google Scholar]
- S.V. Samsonov, A.A. Bogdashov, G.G. Denisov, et al., “Cascade of Two W-Band Helical-Waveguide Gyro-TWTs With High Gain and Output Power: Concept and Modeling”. IEEE Trans. Electron Devices, 64, 3 1305–1309 (2017). doi:10.1109/TED.2016.2646065. [Google Scholar]
- L. Zhang, et al., “Multi-Mode Coupling Wave Theory for Helically Corrugated Waveguide”. IEEE Trans. Microwave Theory Techn., 60, 1, 1–7 (Jan 2012), doi:10.1109/tmtt.2011.2170848. [Google Scholar]
- G.G. Denisov, M.G. Reznikov. “Corrugated cylindrical resonators for short-wavelength relativistic microwave oscillators”. Radiophysics and Quantum Electronics, 25, 5, 407–413 (May 1982). doi:10.1007/bf01035315. [Google Scholar]
- S.V. Mishakin, S.V. Samsonov. “Analysis of Dispersion and Losses in Helically Corrugated Metallic Waveguides by 2-D Vector Finite-Element Method”. IEEE Trans. Microwave Theory Techn., 59, 9, 2189–2196 (Sept, 2011). doi:10.1109/TMTT.2011.2160201. [Google Scholar]
- G. Burt, et al., “Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study”. Physical Review E, 70, 4, 046402 (2004). doi:10.1103/PhysRevE.70.046402. [Google Scholar]
- G. Schmidt. “Nonadiabatic Particle Motion in Axialsymmetric Fields”. The Physics of Fluids, 5, 8, 994–1002 (1962). doi:10.1063/1.1706715. [Google Scholar]
- C.H. Du, et al., “Development of a Magnetic Cusp Gun for Terahertz Harmonic Gyrodevices”. IEEE Trans. Electron Devices, 59, 12, 3635–3640 (Dec 2012). doi:10.1109/ted.2012.2220547. [Google Scholar]
- C.H. Du, X.B. Qi, B.L. Hao, et al., “Conformal Cross-Flow Axis-Encircling Electron Beam for Driving THz Harmonic Gyrotron”. Ieee Electron Device Letters, 36, 9, 960–962 (Sep, 2015). doi:10.1109/led.2015.2460457. [Google Scholar]
- M.J. Rhee, W.W. Destler. “Relativistic electron dynamics in a cusped magnetic field”. The Physics of Fluids, 17, 8, 1574–1581 (1974). doi:10.1063/1.1694936. [Google Scholar]
- W.W. Destler, M.J. Rhee. “Radial and axial compression of a hollow electron beam using an asymmetric magnetic cusp”. The Physics of Fluids, 20, 9, 1582, 1977/09/01–1584 (1977). doi:10.1063/1.862029. [Google Scholar]
- D.A. Gallagher, M. Barsanti, F. Scafuri, et al., “High-power cusp gun for harmonic gyro-device applications”. IEEE Trans. Plasma Sci., 28, 3, 695–699 (2000). doi:10.1109/27.887705. [Google Scholar]
- W.W. Destler, R. Kulkarni, C.D. Striffler, et al., “Microwave generation from rotating electron beams in magnetron-type waveguides”. J. Appl. Phys., 54, 7, 4152–4162, 1983/07/01 (1983). doi:10.1063/1.332550. [Google Scholar]
- C.R. Donaldson, et al., “Design and Numerical Optimization of a Cusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices”. IEEE Trans. Plasma Sci., 37, 11, 2153–2157 (Nov 2009). doi:10.1109/tps.2009.2031470. [Google Scholar]
- W.L. He, et al., “Design, Simulation and Experiment of a Cusp Electron Beam for Millimeter Wave Gyro-devices”. (2009 Ieee International Vacuum Electronics Conference). 2009, pp. 517–518. [Google Scholar]
- L. Zhang, W.L. He, C.R. Donaldson, et al., “Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA”. Physics of Plasmas, 25, 5 (May 2018), Art no. 053104. doi:10.1063/1.5027070. [Google Scholar]
- L. Zhang, W.L. He, C.R. Donaldson, et al., “Design and Measurement of a Broadband Sidewall Coupler for a W-Band Gyro-TWA”. IEEE Trans. Microwave Theory Techn., 63, 10, 3183–3190 (Oct. 2015). doi:10.1109/tmtt.2015.2464302. [Google Scholar]
- L. Zhang, W.L. He, C.R. Donaldson, et al., “Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations”. Journal of Infrared Millimeter and Terahertz Waves, 37, 9, 846–856 (Sep 2016). doi:10.1007/s10762-016-0280-y. [Google Scholar]
- L. Zhang, C.R. Donaldson, J. Garner, et al., “Input coupling systems for millimetre-wave gyrotron travelling wave amplifiers”. Iet Microwaves Antennas & Propagation, 12, 11, 1748–1751 (Sep 2018). doi:10.1049/iet-map.2018.0040. [Google Scholar]
- L. Zhang, C.R. Donaldson, W.L. He. “Design and measurement of a polarization convertor based on a truncated circular waveguide”. Journal of Physics D-Applied Physics, 45, 34 (Aug 2012), Art no. 345103. doi:10.1088/0022-3727/45/34/345103. [Google Scholar]
- L. Zhang, C.R. Donaldson, A.W. Cross, et al., “A pillbox window with impedance matching sections for a W-band gyro-TWA”. IEEE Electron Device Letters, 1–1 (2018). doi:10.1109/LED.2018.2834859. [Google Scholar]
- L. Zhang, W. He, C.R. Donaldson, et al., “Design and Measurement of a Broadband Sidewall Coupler for a W-Band Gyro-TWA”. IEEE Trans. Microwave Theory Techn., 63, 10, 3183–3190 (Oct. 2015). doi:10.1109/TMTT.2015.2464302. [Google Scholar]
- L. Zhang, W. He, C.R. Donaldson, et al., “Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations”. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 9, 846–856 (2016). doi:10.1007/s10762-016-0280-y. [Google Scholar]
- P. McElhinney, et al., “An Output Coupler for a W-Band High Power Wideband Gyroamplifier”. IEEE Trans. Electron Devices, 64, 4, 1763–1766 (2017). doi:10.1109/TED.2017.2660304. [Google Scholar]
- P. McElhinney, C.R. Donaldson, L. Zhang, et al., “A high directivity broadband corrugated horn for W-band gyro-devices”. IEEE Trans. Antennas Propag., 61, 3, 1453–1456 (2013). doi:10.1109/TAP.2012.2228840. [Google Scholar]
- L. Zhang, et al., “Optimization and Measurement of a Smoothly Profiled Horn for a W-Band Gyro-TWA”. IEEE Trans. Electron Devices, 64, 6, 2665–2669 (June 2017). doi:10.1109/TED.2017.2687949. [Google Scholar]
- Y. Zhang, et al., “Design and Measurement of a W-Band Brewster Window”. IEEE Microw. Wireless Compon. Lett., 25, 12, 826–828 (Dec. 2015). doi:10.1109/LMWC.2015.2495110. [Google Scholar]
- C.R. Donaldson, W. He, L. Zhang, et al., “A W-Band Multi-Layer Microwave Window for Pulsed Operation of Gyro-Devices”. IEEE Microw. Wireless Compon. Lett., 23, 5, 237–239 (May 2013). doi:10.1109/LMWC.2013.2251619. [Google Scholar]
- C.R. Donaldson, P. McElhinney, L. Zhang, et al., “Wide-Band HE11 Mode Terahertz Wave Windows for Gyro-Amplifiers”. IEEE Transactions on Terahertz Science and Technology, 6, 1, 108–112 (Jan 2016). doi:10.1109/tthz.2015.2495221. [Google Scholar]
- L. Zhang, C.R. Donaldson, P. Cain, et al., “Amplification of frequency-swept signals in a W-band gyrotron travelling wave amplifier”. IEEE Electron Device Letters, 1–1 (2018). doi:10.1109/LED.2018.2836868. [Google Scholar]
- L. Zhang, C.R. Donaldson, W. He. “Optimization of a triode-type cusp electron gun for a W-band gyro-TWA”. Physics of Plasmas, 25, 4, 043120, 2018/04/01 (2018). doi:10.1063/1.5028262. [Google Scholar]
- S.V. Mishakin, S.V. Samsonov. “An Approach to Thermal Analysis of Helically Corrugated Waveguide Elements of Vacuum Electron Devices”. IEEE Trans. Microwave Theory Techn., 66, 12, 5206–5211 (2018). doi:10.1109/TMTT.2018.2873362. [Google Scholar]
- L. Zhang, W. He, A.W. Cross, et al., “Design of an Energy Recovery System for a Gyrotron Backward-Wave Oscillator”. IEEE Trans. Plasma Sci., 37, 3, 390–394 (2009). doi:10.1109/TPS.2008.2012108. [Google Scholar]
- L. Zhang, W.L. He, A.W. Cross, et al., “Numerical Optimization of a Multistage Depressed Collector With Secondary Electron Emission for an X-band Gyro-BWO”. IEEE Trans. Plasma Sci., 37, 12, 2328–2334 (Dec 2009). doi:10.1109/tps.2009.2034164. [Google Scholar]
- C.R. Donaldson, L. Zhang, M. Beardsley, et al., “CNC Machined Helically Corrugated Interaction Region for a THz Gyrotron TravelingWave Amplifier”. IEEE Transactions on Terahertz Science and Technology, 8, 1, 85–89 (Jan 2018). doi:10.1109/tthz.2017.2778944. [Google Scholar]
- S.V. Mishakin, S.V. Samsonov, G.G. Denisov. “A Helical-Waveguide Gyro-TWT at the Third Cyclotron Harmonic”. IEEE Trans. Electron Devices, 62, 10, 3387–3392 (2015). doi:10.1109/TED.2015.2460265. [Google Scholar]
- J.R. Garner, L. Zhang, C.R. Donaldson, et al., “Design Study of a 372-GHz Higher Order Mode Input Coupler”. IEEE Trans. Electron Devices, 63, 8 3284–3290 (Aug 2016). doi:10.1109/ted.2016.2581314. [Google Scholar]
- J.R. Garner, L. Zhang, C.R. Donaldson, et al., “Design Study of a Fundamental Mode Input Coupler for a 372-GHz Gyro-TWA I: Rectangular-to-Circular Coupling Methods”. IEEE Trans. Electron Devices, 63, 1, 497–503 (Jan 2016). doi:10.1109/ted.2015.2501028. [Google Scholar]