Open Access
Issue
TST
Volume 13, Number 3, September 2020
Page(s) 90 - 111
DOI https://doi.org/10.1051/tst/2020133090
Published online 06 December 2021
  1. K.R. Chu. “The electron cyclotron maser”. Rev. Mod. Phys., 76, 2, 489–540 (May, 2004), doi:10.1103/RevModPhys.76.489. [Google Scholar]
  2. G.G. Denisov, V.L. Bratman, A.D.R. Phelps, et al., “Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth”. IEEE Trans. Plasma Sci., 26, 3, 508–518 (1998), doi:10.1109/27.700785. [Google Scholar]
  3. W. He, C.R. Donaldson, L. Zhang, et al., “High Power Wideband Gyrotron Backward Wave Oscillator Operating towards the Terahertz Region”. Phys. Rev. Lett., 110, 16, 165101 (2013) , doi:10.1103/PhysRevLett.110.165101. [Google Scholar]
  4. W. He, et al., “Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide”. Appl. Phys. Lett., 89, 9, 091504 (2006), doi:10.1063/1.2345607. [Google Scholar]
  5. G.G. Denisov, et al., “Gyrotron Traveling Wave Amplifier with a Helical Interaction Waveguide”. Phys. Rev. Lett., 81, 25, 5680–5683 (Dec, 1998), doi:10.1103/PhysRevLett.81.5680. [Google Scholar]
  6. V.L. Bratman, et al., “High-Gain Wide-Band Gyrotron Traveling Wave Amplifier with a Helically Corrugated Waveguide”. Phys. Rev. Lett., 84, 12, 2746–2749 (2000), doi:10.1103/PhysRevLett.84.2746. [Google Scholar]
  7. W. He, C.R. Donaldson, L. Zhang, et al., “Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region”. Phys. Rev. Lett., 119, 18, 184801 (Oct, 2017), doi:10.1103/PhysRevLett.119.184801. [Google Scholar]
  8. L. Zhang, et al., “Experimental Study of Microwave Pulse Compression Using a Five-Fold Helically Corrugated Waveguide”. IEEE Trans. Microwave TheoryTechn., 63, 3, 1090–1096 (2015). doi:10.1109/TMTT.2015.2393882. [Google Scholar]
  9. S.V. Samsonov, et al., “Compression of Frequency-Modulated Pulses using Helically Corrugated Waveguides and Its Potential for Generating Multigigawatt rf Radiation”. Phys. Rev. Lett., 92, 11 (Mar, 2004), doi:10.1103/PhysRevLett.92.118301. [Google Scholar]
  10. V.L. Bratman, et al., “Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor”. Physics of Plasmas, 17, Art no 11 (Nov 2010), doi:10.1063/1.3505825. [Google Scholar]
  11. S.V. Kuzikov, A.V. Savilov, A.A. Vikharev “Flying radio frequency undulator”. Appl. Phys. Lett., 105, 3, 033504, 2014/07/21 (2014), doi:10.1063/1.4890586. [Google Scholar]
  12. L. Zhang, W. He, J. Clarke, et al., “Systematic study of a corrugated waveguide as a microwave undulator”. Journal of Synchrotron Radiation, 26, 1, 1 (2019). doi:10.1107/S1600577518014297. [Google Scholar]
  13. P.-K.L. Chao-Hai Du Millimeter-Wave, Gyrotron Traveling-Wave Tube Amplifiers. Springer, Berlin, Heidelberg (2014). [Google Scholar]
  14. K.R. Chu, et al., “Ultrahigh Gain Gyrotron Traveling Wave Amplifier”, Phys. Rev. Lett., 81, 21, 4760–4763 (1998). [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.81.4760 [Google Scholar]
  15. E.A. Nanni, S.M. Lewis, M.A. Shapiro, et al., “Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier”, Phys. Rev. Lett., 111, 23, 235101 (2013). doi:10.1103/PhysRevLett.111.235101. [Google Scholar]
  16. J.X. Wang, et al., “Simulation and Experiment of a Ku-Band Gyro-TWT”. IEEE Trans. Electron Devices, 61, 6, 1818–1823 (Jun 2014), doi:10.1109/ted.2013.2296552. [Google Scholar]
  17. S.V. Samsonov, et al., “Ka-Band Gyrotron Traveling-Wave Tubes With the Highest Continuous-Wave and Average Power”. IEEE Trans. Electron Devices, 61, 12, 4264–4267 (2014), doi:10.1109/TED.2014.2364623. [Google Scholar]
  18. S.V. Samsonov, et al., “CW Ka-Band Kilowatt-Level Helical-Waveguide Gyro-TWT”. IEEE Trans. Electron Devices, 59, 8 2250–2255 (2012). doi:10.1109/TED.2012.2196703. [Google Scholar]
  19. S.V. Samsonov, A.A. Bogdashov, G.G. Denisov, et al., “Cascade of Two W-Band Helical-Waveguide Gyro-TWTs With High Gain and Output Power: Concept and Modeling”. IEEE Trans. Electron Devices, 64, 3 1305–1309 (2017). doi:10.1109/TED.2016.2646065. [Google Scholar]
  20. L. Zhang, et al., “Multi-Mode Coupling Wave Theory for Helically Corrugated Waveguide”. IEEE Trans. Microwave Theory Techn., 60, 1, 1–7 (Jan 2012), doi:10.1109/tmtt.2011.2170848. [Google Scholar]
  21. G.G. Denisov, M.G. Reznikov. “Corrugated cylindrical resonators for short-wavelength relativistic microwave oscillators”. Radiophysics and Quantum Electronics, 25, 5, 407–413 (May 1982). doi:10.1007/bf01035315. [Google Scholar]
  22. S.V. Mishakin, S.V. Samsonov. “Analysis of Dispersion and Losses in Helically Corrugated Metallic Waveguides by 2-D Vector Finite-Element Method”. IEEE Trans. Microwave Theory Techn., 59, 9, 2189–2196 (Sept, 2011). doi:10.1109/TMTT.2011.2160201. [Google Scholar]
  23. G. Burt, et al., “Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study”. Physical Review E, 70, 4, 046402 (2004). doi:10.1103/PhysRevE.70.046402. [Google Scholar]
  24. G. Schmidt. “Nonadiabatic Particle Motion in Axialsymmetric Fields”. The Physics of Fluids, 5, 8, 994–1002 (1962). doi:10.1063/1.1706715. [Google Scholar]
  25. C.H. Du, et al., “Development of a Magnetic Cusp Gun for Terahertz Harmonic Gyrodevices”. IEEE Trans. Electron Devices, 59, 12, 3635–3640 (Dec 2012). doi:10.1109/ted.2012.2220547. [Google Scholar]
  26. C.H. Du, X.B. Qi, B.L. Hao, et al., “Conformal Cross-Flow Axis-Encircling Electron Beam for Driving THz Harmonic Gyrotron”. Ieee Electron Device Letters, 36, 9, 960–962 (Sep, 2015). doi:10.1109/led.2015.2460457. [Google Scholar]
  27. M.J. Rhee, W.W. Destler. “Relativistic electron dynamics in a cusped magnetic field”. The Physics of Fluids, 17, 8, 1574–1581 (1974). doi:10.1063/1.1694936. [Google Scholar]
  28. W.W. Destler, M.J. Rhee. “Radial and axial compression of a hollow electron beam using an asymmetric magnetic cusp”. The Physics of Fluids, 20, 9, 1582, 1977/09/01–1584 (1977). doi:10.1063/1.862029. [Google Scholar]
  29. D.A. Gallagher, M. Barsanti, F. Scafuri, et al., “High-power cusp gun for harmonic gyro-device applications”. IEEE Trans. Plasma Sci., 28, 3, 695–699 (2000). doi:10.1109/27.887705. [Google Scholar]
  30. W.W. Destler, R. Kulkarni, C.D. Striffler, et al., “Microwave generation from rotating electron beams in magnetron-type waveguides”. J. Appl. Phys., 54, 7, 4152–4162, 1983/07/01 (1983). doi:10.1063/1.332550. [Google Scholar]
  31. C.R. Donaldson, et al., “Design and Numerical Optimization of a Cusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices”. IEEE Trans. Plasma Sci., 37, 11, 2153–2157 (Nov 2009). doi:10.1109/tps.2009.2031470. [Google Scholar]
  32. W.L. He, et al., “Design, Simulation and Experiment of a Cusp Electron Beam for Millimeter Wave Gyro-devices”. (2009 Ieee International Vacuum Electronics Conference). 2009, pp. 517–518. [Google Scholar]
  33. L. Zhang, W.L. He, C.R. Donaldson, et al., “Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA”. Physics of Plasmas, 25, 5 (May 2018), Art no. 053104. doi:10.1063/1.5027070. [Google Scholar]
  34. L. Zhang, W.L. He, C.R. Donaldson, et al., “Design and Measurement of a Broadband Sidewall Coupler for a W-Band Gyro-TWA”. IEEE Trans. Microwave Theory Techn., 63, 10, 3183–3190 (Oct. 2015). doi:10.1109/tmtt.2015.2464302. [Google Scholar]
  35. L. Zhang, W.L. He, C.R. Donaldson, et al., “Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations”. Journal of Infrared Millimeter and Terahertz Waves, 37, 9, 846–856 (Sep 2016). doi:10.1007/s10762-016-0280-y. [Google Scholar]
  36. L. Zhang, C.R. Donaldson, J. Garner, et al., “Input coupling systems for millimetre-wave gyrotron travelling wave amplifiers”. Iet Microwaves Antennas & Propagation, 12, 11, 1748–1751 (Sep 2018). doi:10.1049/iet-map.2018.0040. [Google Scholar]
  37. L. Zhang, C.R. Donaldson, W.L. He. “Design and measurement of a polarization convertor based on a truncated circular waveguide”. Journal of Physics D-Applied Physics, 45, 34 (Aug 2012), Art no. 345103. doi:10.1088/0022-3727/45/34/345103. [Google Scholar]
  38. L. Zhang, C.R. Donaldson, A.W. Cross, et al., “A pillbox window with impedance matching sections for a W-band gyro-TWA”. IEEE Electron Device Letters, 1–1 (2018). doi:10.1109/LED.2018.2834859. [Google Scholar]
  39. L. Zhang, W. He, C.R. Donaldson, et al., “Design and Measurement of a Broadband Sidewall Coupler for a W-Band Gyro-TWA”. IEEE Trans. Microwave Theory Techn., 63, 10, 3183–3190 (Oct. 2015). doi:10.1109/TMTT.2015.2464302. [Google Scholar]
  40. L. Zhang, W. He, C.R. Donaldson, et al., “Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations”. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 9, 846–856 (2016). doi:10.1007/s10762-016-0280-y. [Google Scholar]
  41. P. McElhinney, et al., “An Output Coupler for a W-Band High Power Wideband Gyroamplifier”. IEEE Trans. Electron Devices, 64, 4, 1763–1766 (2017). doi:10.1109/TED.2017.2660304. [Google Scholar]
  42. P. McElhinney, C.R. Donaldson, L. Zhang, et al., “A high directivity broadband corrugated horn for W-band gyro-devices”. IEEE Trans. Antennas Propag., 61, 3, 1453–1456 (2013). doi:10.1109/TAP.2012.2228840. [Google Scholar]
  43. L. Zhang, et al., “Optimization and Measurement of a Smoothly Profiled Horn for a W-Band Gyro-TWA”. IEEE Trans. Electron Devices, 64, 6, 2665–2669 (June 2017). doi:10.1109/TED.2017.2687949. [Google Scholar]
  44. Y. Zhang, et al., “Design and Measurement of a W-Band Brewster Window”. IEEE Microw. Wireless Compon. Lett., 25, 12, 826–828 (Dec. 2015). doi:10.1109/LMWC.2015.2495110. [Google Scholar]
  45. C.R. Donaldson, W. He, L. Zhang, et al., “A W-Band Multi-Layer Microwave Window for Pulsed Operation of Gyro-Devices”. IEEE Microw. Wireless Compon. Lett., 23, 5, 237–239 (May 2013). doi:10.1109/LMWC.2013.2251619. [Google Scholar]
  46. C.R. Donaldson, P. McElhinney, L. Zhang, et al., “Wide-Band HE11 Mode Terahertz Wave Windows for Gyro-Amplifiers”. IEEE Transactions on Terahertz Science and Technology, 6, 1, 108–112 (Jan 2016). doi:10.1109/tthz.2015.2495221. [Google Scholar]
  47. L. Zhang, C.R. Donaldson, P. Cain, et al., “Amplification of frequency-swept signals in a W-band gyrotron travelling wave amplifier”. IEEE Electron Device Letters, 1–1 (2018). doi:10.1109/LED.2018.2836868. [Google Scholar]
  48. L. Zhang, C.R. Donaldson, W. He. “Optimization of a triode-type cusp electron gun for a W-band gyro-TWA”. Physics of Plasmas, 25, 4, 043120, 2018/04/01 (2018). doi:10.1063/1.5028262. [Google Scholar]
  49. S.V. Mishakin, S.V. Samsonov. “An Approach to Thermal Analysis of Helically Corrugated Waveguide Elements of Vacuum Electron Devices”. IEEE Trans. Microwave Theory Techn., 66, 12, 5206–5211 (2018). doi:10.1109/TMTT.2018.2873362. [Google Scholar]
  50. L. Zhang, W. He, A.W. Cross, et al., “Design of an Energy Recovery System for a Gyrotron Backward-Wave Oscillator”. IEEE Trans. Plasma Sci., 37, 3, 390–394 (2009). doi:10.1109/TPS.2008.2012108. [Google Scholar]
  51. L. Zhang, W.L. He, A.W. Cross, et al., “Numerical Optimization of a Multistage Depressed Collector With Secondary Electron Emission for an X-band Gyro-BWO”. IEEE Trans. Plasma Sci., 37, 12, 2328–2334 (Dec 2009). doi:10.1109/tps.2009.2034164. [Google Scholar]
  52. C.R. Donaldson, L. Zhang, M. Beardsley, et al., “CNC Machined Helically Corrugated Interaction Region for a THz Gyrotron TravelingWave Amplifier”. IEEE Transactions on Terahertz Science and Technology, 8, 1, 85–89 (Jan 2018). doi:10.1109/tthz.2017.2778944. [Google Scholar]
  53. S.V. Mishakin, S.V. Samsonov, G.G. Denisov. “A Helical-Waveguide Gyro-TWT at the Third Cyclotron Harmonic”. IEEE Trans. Electron Devices, 62, 10, 3387–3392 (2015). doi:10.1109/TED.2015.2460265. [Google Scholar]
  54. J.R. Garner, L. Zhang, C.R. Donaldson, et al., “Design Study of a 372-GHz Higher Order Mode Input Coupler”. IEEE Trans. Electron Devices, 63, 8 3284–3290 (Aug 2016). doi:10.1109/ted.2016.2581314. [Google Scholar]
  55. J.R. Garner, L. Zhang, C.R. Donaldson, et al., “Design Study of a Fundamental Mode Input Coupler for a 372-GHz Gyro-TWA I: Rectangular-to-Circular Coupling Methods”. IEEE Trans. Electron Devices, 63, 1, 497–503 (Jan 2016). doi:10.1109/ted.2015.2501028. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.