Open Access
Issue
TST
Volume 14, Number 1, March 2021
Page(s) 1 - 19
DOI https://doi.org/10.1051/tst/2021141001
Published online 06 December 2021
  1. Y.S. Lee, Principles of Terahertz Science and Technology, Springer Science & Business Media (2009). [Google Scholar]
  2. H.J. Song, T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications, Pan Stanford (2015). [Google Scholar]
  3. D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing and Communications, Elsevier (2013). [Google Scholar]
  4. M. Tonouchi, “Cutting-edge terahertz technology”. Nature Photonics, 1, 97–105(2007). [Google Scholar]
  5. P.H. Siegel, “Terahertz technology”. IEEE Transactions on microwave theory and techniques, 50, 3, 910–928(2002). [Google Scholar]
  6. B. Zhu, Z. Han, “Enhanced terahertz fingerprint detection beyond refractive index sensing in a periodic silicon waveguide cavity”. Journal of Electronic Science and Technology, 16, 2, 105–109(2018). [Google Scholar]
  7. P. Hillger, J. Grzyb, R. Jain, et al., “Terahertz imaging and sensing applications with silicon-based technologies”. IEEE Transactions on Terahertz Science and Technology, 9(1), 1–19(2018). [Google Scholar]
  8. G. Scalari, C. Walther, M. Fischer, et al., “THz and sub-THz quantum cascade lasers”. Laser Photonics Review, 3, 45–66(2009). [Google Scholar]
  9. M. Rahm, J.S. Li, W.J. Padilla, “THz wave modulators: a brief review on different modulation techniques”. Journal of Infrared, Millimeter, and Terahertz Waves, 34(1), 1–27(2013). [Google Scholar]
  10. L.J. Liang, Z. Zhang, X. Yan, et al., “Broadband terahertz transmission modulation based on hybrid graphene-metal metamaterial”. Journal of Electronic Science and Technology, 16(2), 98–104(2018). [Google Scholar]
  11. Y. Bai, T. Bu, K. Chen, et al., “Review about the optical-controlled terahertz waves modulator”. Applied Spectroscopy Reviews, 50(9), 707–727(2015). [Google Scholar]
  12. L. Fekete, F. Kadlec, P. Kuzel, et al., “Ultrafast opto-terahertz photonic crystal modulator”. Optics Letters, 32(6), 680–682(2007). [Google Scholar]
  13. H.T. Chen, W.J. Padilla, M.J. Cich, et al., “A metamaterial solid-state terahertz phase modulator”. Nature Photonics, 3(3), 148–151(2009). [Google Scholar]
  14. J.S. Li, “Terahertz wave modulator based on optically controllable metamaterial”. Optics and Laser Technology, 43(1), 102–105(2011). [Google Scholar]
  15. Y.P. Li, D.N. Zhang, R.T. Jia, et al., “Mechanism and optimization of a graphene/silicon hybrid diode terahertz modulator”. ACS Applied Electronic Materials, 2, 1953–1959(2020). [Google Scholar]
  16. D. Shrekenhamer, C.M. Watts, W.J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator”. Optics Express, 21(10), 12507(2013). [Google Scholar]
  17. D.H. Auston, C.V. Shank, “Picosecond ellipsometry of transient electron-hole plasmas in germanium”. Physical Review Letters, 32(20), 1120–1123(1974). [Google Scholar]
  18. A.J. Alcock, P.B. Corkum, D.J. James, “A fast scalable switching technique for high-power CO2 laser radiation”. Applied Physics Letters, 27(12), 680(1975). [Google Scholar]
  19. S.A. Jamison, A.V. Nurmikko, H.J. Gerritsen, “Fast transient spectroscopy of the free-carrier plasma edge in Ge”. Applied Physics Letters, 29(10), 640–643(1976). [Google Scholar]
  20. H. Salzmann, T. Vogel, G. Dodel, “Subnanosecond optical switching of far infrared radiation”. Optics Communications, 47(5), 340–342(1983). [Google Scholar]
  21. L. Fekete, J.Y. Hlinka, E. Kadlec, et al., “Active optical control of the terahertz reflectivity of high-resistivity semiconductors”. Optics Letters, 30(15), 1992–1994(2005). [Google Scholar]
  22. T. Nozokido, H. Minamide, K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors”. Electronics & Communications in Japan, 80(6), 1–9(2015). [Google Scholar]
  23. T. Vogel, G. Dodel, E. Holzhauer, et al., “High-speed switching of far-infrared radiation by photoionization in a semiconductor”. Applied Optics, 31(3), 329–337(1992). [Google Scholar]
  24. T.E. Wilson, “Modeling the high-speed switching of far-infrared radiation by photoionization in a semiconductor”. Physical Review B, 59(20), 12996–13002(1999). [Google Scholar]
  25. A. Kannegulla, M.I.B. Shams, L. Liu, et al., “Photo-induced spatial modulation of THz waves: opportunities and limitations”. Optics Express, 23(25), 32098–32112(2015). [Google Scholar]
  26. P. Jonsson, H. Bleichner, M. Isberg, et al., “The ambipolar Auger coefficient: Measured temperature dependence in electron irradiated and highly injected n-type silicon”. Journal of Applied Physics, 81(5), 2256–2262(1997). [Google Scholar]
  27. J. Linnros, V. Grivickas, “Carrier-diffusion measurements in silicon with a Fourier-transient-grating method”. Physical Review B Condensed Matter, 50(23), 16943(1994). [Google Scholar]
  28. H.M. Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53- microm picosecond laser pulses”. Physical Review B Condensed Matter, 35(15), 8166(1987). [Google Scholar]
  29. R. Ulbricht, E. Hendry, J. Shan, et al., “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy”. Reviews of Modern Physics, 83(2), 543–586(2011). [Google Scholar]
  30. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics. 2nd ed., Wiley, New York (2007). [Google Scholar]
  31. G. Georgiou, H.K. Tyagi, P. Mulder, et al., “Photo-generated THz antennas”. Scientific Reports, 4(1), 3584(2014). [Google Scholar]
  32. H. Alius, G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon”. Infrared Physics, 32, 1–11(1991). [Google Scholar]
  33. G.F. Brand, “Diffraction of millimeter waves by projecting a shadow pattern onto a semiconductor”. International Journal of Infrared and Millimeter Waves, 17(7), 1253–1262(1996). [Google Scholar]
  34. G.F. Brand, “Remote millimeter-wave beam control by the illumination of a semiconductor”. IEEE Transactions on Microwave Theory and Techniques, 48(5), 855–857(2000). [Google Scholar]
  35. T. Okada, K. Ooi, Y. Nakata, et al., “Direct creation of a photoinduced metallic structure and its optical properties in the terahertz frequency region”. Optics Letters, 35(10), 1719(2010). [Google Scholar]
  36. T. Okada, K. Tanaka, “Photo-designed terahertz devices”. Scientific Reports, 1(10), 121(2011). [Google Scholar]
  37. L.J. Cheng, L. Liu, “Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components”. Optics Express, 21(23), 28657–28667(2013). [Google Scholar]
  38. N. Kamaraju, A. Rubano, L. Jian, et al., “Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials”. Light: Science & Applications, 3(2),(2014). [Google Scholar]
  39. N. Kanda, K. Konishi, M. Kuwata-Gonokami, “All-photoinduced terahertz optical activity”. Optics Letters, 39(11), 3274–3277(2014). [Google Scholar]
  40. C. Rizza, A. Ciattoni, L. Columbo, et al., “Terahertz optically tunable dielectric metamaterials without microfabrication”. Optics letters, 38(8), 1307–1309(2013). [Google Scholar]
  41. S. Busch, B. Scherger, M. Scheller, et al., “Optically controlled terahertz beam steering and imaging”, Optics Letters, 37(8), 1391–1393(2012). [Google Scholar]
  42. X. Wang, Z. Xie, W. Sun, et al., “Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate”. Optics Letters, 38(22), 4731–4734(2013). [Google Scholar]
  43. M.I.B. Shams, Z. Jiang, J. Qayyum, et al., “A terahertz reconfigurable photo-induced fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming”, in 2015 IEEE MTT-S International Microwave Symposium, (2015). [Google Scholar]
  44. M.I.B. Shams, Z. Jiang, S.M. Rahman, et al., “A 740-GHz dynamic two-dimensional beam-steering and forming antenna based on photo-induced reconfigurable Fresnel zone plates”. IEEE Transactions on Terahertz Science and Technology, 7(3), 310–319(2017). [Google Scholar]
  45. Z. Xie, X. Wang, J. Ye, et al., “Spatial terahertz modulator”. Scientific Reports, 3, 3347(2013). [Google Scholar]
  46. S.F. Busch, S. Schumann, C. Jansen, et al., “Optically gated tunable terahertz filters”. Applied Physics Letters, 10, 261109 (2012). [Google Scholar]
  47. M.S. Song, C. Kang, C.S. Kee, et al., “Trilayer hybrid structures for highly efficient THz modulation”. Optics express, 26(19), 25315–25321(2018). [Google Scholar]
  48. W. Liu, F. Fan, S. Xu, et al., “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate”. Scientific Reports, 8(1), 8304:1–8(2018). [Google Scholar]
  49. J.S. Li, S.H. Li, L. Zhang, “Terahertz modulator using 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST)/Si hybrid structure”. IEEE Photonics Journal, 10(2), 5900306(2018). [Google Scholar]
  50. F. Hu, H. Wang, T. Li, et al., “Photo-induced high modulation depth terahertz modulator based on VO x -Si-VO x hybrid structure”. Journal of Physics D: Applied Physics, 52(17), 175103(2019). [Google Scholar]
  51. D.S. Yang, J. Tian, X.A. Cheng, “Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets”. Optics Express, 25(14), 16364(2017). [Google Scholar]
  52. Q. Li, Z. Tian, X. Zhang, et al., “Active graphene-silicon hybrid diode for terahertz waves”. Nature Communications, 6, 7082(2015). [Google Scholar]
  53. S. Chen, F. Fan, Y. Miao, et al., “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets”. Nanoscale, 9, 4713–4719(2016). [Google Scholar]
  54. I.R. Hooper, N. Grant, L. Barr, et al., “High efficiency photomodulators for millimeter wave and THz radiation”. Scientific Reports, 9(1), 18304(2019). [Google Scholar]
  55. Z.W. Shi, X.X. Cao, Q.Y. Wen, et al., “Terahertz modulators based on silicon nanotip array”. Advanced Optical Materials, 6(2), 1700620(2017). [Google Scholar]
  56. Q.Y. Wen, Y.L. He, Q.H. Yang, et al., “High-performance photo-induced spatial terahertz modulator based on micropyramid silicon array”. Advanced Materials Technologies, 5, 1901058(2020). [Google Scholar]
  57. Y.L. He, Y.S. Wang, M. Li, et al., “All-optical spatial terahertz modulator with surface-textured and passivated silicon”, Optics Express, 29(8), 8914–8925(2021). [Google Scholar]