Open Access
Issue |
TST
Volume 13, Number 1, March 2020
|
|
---|---|---|
Page(s) | 1 - 21 | |
DOI | https://doi.org/10.1051/tst/2020131001 | |
Published online | 31 March 2020 |
- F.J. Belinfante. “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”. Physica, 7, No. 5, 449–474 (1940). [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Poynting. “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light”. Proc. Royal Society London A, 82, 560–567 (1909). [Google Scholar]
- R. Beth. “Mechanical detection and measurement of the angular momentum of light”. Phys. Rev., 50, 115–125 (1936). [CrossRef] [Google Scholar]
- L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, et al. “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes”. Phys. Rev. A, 435, 8185–8189 (1992). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- J. Wang, J.-Y. Yang, I.M. Fazal, et al. “Terabit free-space data transmission employing orbital angular momentum multiplexing”. Nature Photonics, 6, 488–496 (2012). [CrossRef] [Google Scholar]
- S. Franke-Arnold, L. Allen, M. Padgett. “Advances in optical angular momentum”. Laser Photon. Rev., 2, 299–313 (2008). [CrossRef] [Google Scholar]
- A.M. Yao and M.J. Padgett. “Orbital angular momentum, origins, behavior and applications”. Adv. Opt. Photon., 3, 161–204 (2011). [CrossRef] [Google Scholar]
- J. Yang, C. Zhang, H.F. Ma, et al. “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface”. Appl. Phys. Lett., 112, 203501 (5pp) (2018). [CrossRef] [Google Scholar]
- H. Shi, L. Wang, X. Chen, et al. “Generation of a microwave beam with both orbital and spin angular momenta using a transparent metasurface”. J. Appl. Phys., 126, 063108 (7pp) 2019. [CrossRef] [Google Scholar]
- R.M. Henderson. “Let’s do the twist!”. IEEE Microwave Magazine, 6, 88–96 (2017). [CrossRef] [Google Scholar]
- M. Veysi, C. Guclu, F. Capolino, et al. “Revisiting orbital angular momentum beams”. IEEE Antennas & Propagation Magazine, 4, 68–81 (2018). [CrossRef] [Google Scholar]
- Y. Yan, G. Xie, M.P.J. Lavery, et al. “High-capacity millimeter-wave communications with orbital angular momentum multiplexing”. Nature Communications, 5 4876 (8pp) (2014). [CrossRef] [Google Scholar]
- M. Thumm. “State-of-the-art of high-power gyro-devices and free electron masers”. J. Infrared, Millimeter, and Terahertz Waves, doi.org/ 10.1007/s10762-019-00631-y. [Google Scholar]
- G.S. Nusinovich, M.K.A. Thumm, M.I. Petelin. “The gyrotron at 50: Historical Overview”. J. Infrared, Millimeter, and Terahertz Waves, 35, 325–381 (2014). [CrossRef] [Google Scholar]
- M.V. Kartikeyan, E. Borie and M. Thumm. “Gyrotrons – High Power Microwave and Millimeter Wave Technology”. Springer, Berlin, Germany, ISBN 3-540-40200-4, 2004. [Google Scholar]
- A. Sawant, M.S. Choe, M. Thumm, et al. “Orbital angular momentum (OAM) of rotating modes driven by electrons in electron cyclotron masers”. Scientific Reports, 7, 3373 (10pp) (2017). [CrossRef] [Google Scholar]
- M. Thumm, A. Sawant, M.S. Choe, et al. “The gyrotron – A natural source of high-power orbital angular momentum millimeter-wave beams”. EPJ Web of Conferences, 149, 04014 (2pp) (2017). [CrossRef] [Google Scholar]
- T. Ruess, K.A. Avramidis, G. Gantenbein, et al. “Computer-controlled test system for the excitation of very high-order modes in oversized waveguides”. J. Infrared, Millimeter, and Terahertz Waves, 40, 257–268 (2019). [CrossRef] [Google Scholar]
- M.K.A. Thumm, G.G. Denisov, K. Sakamoto, et al. “High-power gyrotrons for electron cyclotron heating and current drive”. Nuclear Fusion, 59, 073001 (37pp) (2019). [CrossRef] [Google Scholar]
- M. Thumm. “Modes and mode conversion in microwave devices”. in Generation and Application of High Power Microwaves, R.A. Cairns and A.D.R. Phelps, eds. Institute of Physics Publishing, Bristol and Philadelphia, 121–171 (1997). [Google Scholar]
- A. Fokin, M. Glyavin, G. Golubiatnikov, et al. “High-power sub-terahertz source with a record frequency stability at up to 1 Hz”. Scientific Reports, 8, 4317 (6pp) (2018). [CrossRef] [PubMed] [Google Scholar]
- G. Gantenbein, E. Borie, G. Dammertz, et al. “Experimental results and numerical simulations of a high power 140 GHz gyrotron”. IEEE Trans. on Plasma Science, 22, 861–870 (1994). [CrossRef] [Google Scholar]
- W. Kasparek and G. Müller. “The wavenumber spectrometer”. Int. J. Electronics. 64, 5–20 (1988). [CrossRef] [Google Scholar]
- B. Piosczyk, G. Dammertz, O. Dumbrajs, et al. “165 GHz coaxial cavity gyrotron”. IEEE Trans. on Plasma Science, 32, 853–860 (2004). [CrossRef] [Google Scholar]
- V.E. Zapevalov, A.B. Pavelyev, V.I. Khizhnyak. “Natural scheme of electron beam energy recovery in a coaxial gyrotron”. Radiophysics and Quantum Electronics, 43, 671–674 (2000). [CrossRef] [Google Scholar]
- B. Piosczyk, O. Braz, G. Dammertz, et al. “A 1.5-MW, 140-GHz, TE28,16-coaxial cavity gyrotron”. IEEE Trans. on Plasma Science, 25, 460–469 (1997). [Google Scholar]
- C.T. Iatrou, O. Braz, G. Dammertz, et al. “Design and experimental operation of a 165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial rf output”. IEEE Trans. on Plasma Science, 25, 470–479 (1997). [CrossRef] [Google Scholar]
- H. Guo, S.H. Chen, V.L. Granatstein, et al. “Operation of a highly overmoded, harmonic-multiplying, wideband gyrotron amplifier”. Phys. Rev. Letters, 79, 515–518 (1997). [CrossRef] [Google Scholar]
- S.V. Kuzikov, G.G. Denisov, M.I. Petelin, et al. “Study of Ka-band components for a future high-gradient accelerator”. Proc. Int. Workshop Strong Microwaves in Plasmas, ed. A.G. Litvak, Nizhny Novgorod, Vol. 1, 255–263 (2003). [Google Scholar]
- A.A. Bogdashov, G.G. Denisov, S.V. Samsonov, et al. “High-power Ka-band transmission line with a frequency bandwidth of 1 GHz”. Radiophysics and Quantum Electronics, 58, 777–788 (2016). [CrossRef] [Google Scholar]
- M. Petelin, V. Erckmann, J. Hirshfield, et al. “New concepts for quasi-optical structures for use with gyrotron systems”. IEEE Trans. on Electron Devices, 56, 835–838 (2009). [CrossRef] [Google Scholar]
- M. Thumm, W. Kasparek. “Passive high-power microwave components”. IEEE Trans. on Plasma Science, 30, 755–786 (2002). [CrossRef] [Google Scholar]
- G. Junkin, J. Parrón, A. Tennant. “Characterization of an eight-element circular patch array for helical beam modes”. IEEE Trans. on Antennas and Propagation, 67, 7348–7355 (2019). [CrossRef] [Google Scholar]
- J.L. Doane. “Polarization converters for circular waveguide modes”. Int. J. Electronics, 61, 1109–1133 (1986). [CrossRef] [Google Scholar]
- P. Garin, E. Jedar, G. Jendrzejczak, et al., “Symmetric and non-symmetric modes in a 200 kW, 100 GHz gyrotron”. Conf. Digest 12th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, USA, 194–195 (1987). [Google Scholar]
- M. Thumm, A. Jacobs. “In-waveguide TE0,1-to-whispering gallery mode conversion using periodic wall perturbations”. Conf. Digest 13th Int. Conf. on Infrared and Millimeter Waves, Honolulu, Hawaii, USA, 465–466 (1988). [Google Scholar]
- M. Thumm, A. Jacobs, and J. Pretterebner. “Generation of rotating high-order TEm,n modes for cold-test measurements on high-power quasi-optical gyrotron output mode converters”. Conf. Digest 15th Int. Conf. on Infrared and Millimeter Waves, Orlando, Florida, USA, 204–206 (1990). [Google Scholar]
- Iima, M., M. Sato, J. Amano, et al.. “Measurement of radiation field from an improved efficiency quasi-optical converter for whispering-gallery mode”. Conf. Digest 14th Int. Conf. on Infrared and Millimeter Waves, Proc., SPIE, 1240, Würzburg, Germany, 405–406 (1989). [Google Scholar]
- M. Thumm. “High power mode conversion for linearly polarized HE11 hybrid mode output”. Int. J. Electronics, 61, 1135–1153 (1986). [CrossRef] [Google Scholar]
- H. Kumric, M. Thumm and R. Wilhelm. “Optimization of mode converters for generating the fundamental TE01 mode from TE06 gyrotron output at 140 GHz”. Int. J. Electronics, 64, 77–94 (1988). [CrossRef] [Google Scholar]
- N.L. Aleksandrov, A.V. Chirkov, G.G. Denisov, et al. “Selective excitation of high-order modes in circular waveguides”. Int. J. Infrared and Millimeter Waves, 13, 1369–1385 (1992). [CrossRef] [Google Scholar]
- M. Pereyaslavets, O. Braz, S. Kern, et al. “Improvements of mode converters for low-power excitation of gyrotron-type modes”. Int. J. Electronics, 82, 107–115 (1997). [CrossRef] [Google Scholar]
- T. Rzesnicki, J. Jin, B. Piosczyk, et al. “Low power measurements on the new RF output system of a 170 GHz, 2 MW coaxial cavity gyrotron”. Int. J. Infrared and Millimeter Waves, 27, 1–11 (2006). [CrossRef] [Google Scholar]
- T. Ruess, K.A. Avramidis, M. Fuchs, et al. “Towards fully automated systems for the generation of very high order modes in oversized waveguides”. EPJ Web of Conferences, 195, 01030 (2pp) (2018). [CrossRef] [Google Scholar]