Open Access
Issue
TST
Volume 13, Number 1, March 2020
Page(s) 1 - 21
DOI https://doi.org/10.1051/tst/2020131001
Published online 31 March 2020
  1. F.J. Belinfante. “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”. Physica, 7, No. 5, 449–474 (1940). [CrossRef] [MathSciNet] [Google Scholar]
  2. J.H. Poynting. “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarized light”. Proc. Royal Society London A, 82, 560–567 (1909). [Google Scholar]
  3. R. Beth. “Mechanical detection and measurement of the angular momentum of light”. Phys. Rev., 50, 115–125 (1936). [CrossRef] [Google Scholar]
  4. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, et al. “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes”. Phys. Rev. A, 435, 8185–8189 (1992). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. J. Wang, J.-Y. Yang, I.M. Fazal, et al. “Terabit free-space data transmission employing orbital angular momentum multiplexing”. Nature Photonics, 6, 488–496 (2012). [CrossRef] [Google Scholar]
  6. S. Franke-Arnold, L. Allen, M. Padgett. “Advances in optical angular momentum”. Laser Photon. Rev., 2, 299–313 (2008). [CrossRef] [Google Scholar]
  7. A.M. Yao and M.J. Padgett. “Orbital angular momentum, origins, behavior and applications”. Adv. Opt. Photon., 3, 161–204 (2011). [CrossRef] [Google Scholar]
  8. J. Yang, C. Zhang, H.F. Ma, et al. “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface”. Appl. Phys. Lett., 112, 203501 (5pp) (2018). [CrossRef] [Google Scholar]
  9. H. Shi, L. Wang, X. Chen, et al. “Generation of a microwave beam with both orbital and spin angular momenta using a transparent metasurface”. J. Appl. Phys., 126, 063108 (7pp) 2019. [CrossRef] [Google Scholar]
  10. R.M. Henderson. “Let’s do the twist!”. IEEE Microwave Magazine, 6, 88–96 (2017). [CrossRef] [Google Scholar]
  11. M. Veysi, C. Guclu, F. Capolino, et al. “Revisiting orbital angular momentum beams”. IEEE Antennas & Propagation Magazine, 4, 68–81 (2018). [CrossRef] [Google Scholar]
  12. Y. Yan, G. Xie, M.P.J. Lavery, et al. “High-capacity millimeter-wave communications with orbital angular momentum multiplexing”. Nature Communications, 5 4876 (8pp) (2014). [CrossRef] [Google Scholar]
  13. M. Thumm. “State-of-the-art of high-power gyro-devices and free electron masers”. J. Infrared, Millimeter, and Terahertz Waves, doi.org/ 10.1007/s10762-019-00631-y. [Google Scholar]
  14. G.S. Nusinovich, M.K.A. Thumm, M.I. Petelin. “The gyrotron at 50: Historical Overview”. J. Infrared, Millimeter, and Terahertz Waves, 35, 325–381 (2014). [CrossRef] [Google Scholar]
  15. M.V. Kartikeyan, E. Borie and M. Thumm. “Gyrotrons – High Power Microwave and Millimeter Wave Technology”. Springer, Berlin, Germany, ISBN 3-540-40200-4, 2004. [Google Scholar]
  16. A. Sawant, M.S. Choe, M. Thumm, et al. “Orbital angular momentum (OAM) of rotating modes driven by electrons in electron cyclotron masers”. Scientific Reports, 7, 3373 (10pp) (2017). [CrossRef] [Google Scholar]
  17. M. Thumm, A. Sawant, M.S. Choe, et al. “The gyrotron – A natural source of high-power orbital angular momentum millimeter-wave beams”. EPJ Web of Conferences, 149, 04014 (2pp) (2017). [CrossRef] [Google Scholar]
  18. T. Ruess, K.A. Avramidis, G. Gantenbein, et al. “Computer-controlled test system for the excitation of very high-order modes in oversized waveguides”. J. Infrared, Millimeter, and Terahertz Waves, 40, 257–268 (2019). [CrossRef] [Google Scholar]
  19. M.K.A. Thumm, G.G. Denisov, K. Sakamoto, et al. “High-power gyrotrons for electron cyclotron heating and current drive”. Nuclear Fusion, 59, 073001 (37pp) (2019). [CrossRef] [Google Scholar]
  20. M. Thumm. “Modes and mode conversion in microwave devices”. in Generation and Application of High Power Microwaves, R.A. Cairns and A.D.R. Phelps, eds. Institute of Physics Publishing, Bristol and Philadelphia, 121–171 (1997). [Google Scholar]
  21. A. Fokin, M. Glyavin, G. Golubiatnikov, et al. “High-power sub-terahertz source with a record frequency stability at up to 1 Hz”. Scientific Reports, 8, 4317 (6pp) (2018). [CrossRef] [PubMed] [Google Scholar]
  22. G. Gantenbein, E. Borie, G. Dammertz, et al. “Experimental results and numerical simulations of a high power 140 GHz gyrotron”. IEEE Trans. on Plasma Science, 22, 861–870 (1994). [CrossRef] [Google Scholar]
  23. W. Kasparek and G. Müller. “The wavenumber spectrometer”. Int. J. Electronics. 64, 5–20 (1988). [CrossRef] [Google Scholar]
  24. B. Piosczyk, G. Dammertz, O. Dumbrajs, et al. “165 GHz coaxial cavity gyrotron”. IEEE Trans. on Plasma Science, 32, 853–860 (2004). [CrossRef] [Google Scholar]
  25. V.E. Zapevalov, A.B. Pavelyev, V.I. Khizhnyak. “Natural scheme of electron beam energy recovery in a coaxial gyrotron”. Radiophysics and Quantum Electronics, 43, 671–674 (2000). [CrossRef] [Google Scholar]
  26. B. Piosczyk, O. Braz, G. Dammertz, et al. “A 1.5-MW, 140-GHz, TE28,16-coaxial cavity gyrotron”. IEEE Trans. on Plasma Science, 25, 460–469 (1997). [Google Scholar]
  27. C.T. Iatrou, O. Braz, G. Dammertz, et al. “Design and experimental operation of a 165-GHz, 1.5-MW, coaxial-cavity gyrotron with axial rf output”. IEEE Trans. on Plasma Science, 25, 470–479 (1997). [CrossRef] [Google Scholar]
  28. H. Guo, S.H. Chen, V.L. Granatstein, et al. “Operation of a highly overmoded, harmonic-multiplying, wideband gyrotron amplifier”. Phys. Rev. Letters, 79, 515–518 (1997). [CrossRef] [Google Scholar]
  29. S.V. Kuzikov, G.G. Denisov, M.I. Petelin, et al. “Study of Ka-band components for a future high-gradient accelerator”. Proc. Int. Workshop Strong Microwaves in Plasmas, ed. A.G. Litvak, Nizhny Novgorod, Vol. 1, 255–263 (2003). [Google Scholar]
  30. A.A. Bogdashov, G.G. Denisov, S.V. Samsonov, et al. “High-power Ka-band transmission line with a frequency bandwidth of 1 GHz”. Radiophysics and Quantum Electronics, 58, 777–788 (2016). [CrossRef] [Google Scholar]
  31. M. Petelin, V. Erckmann, J. Hirshfield, et al. “New concepts for quasi-optical structures for use with gyrotron systems”. IEEE Trans. on Electron Devices, 56, 835–838 (2009). [CrossRef] [Google Scholar]
  32. M. Thumm, W. Kasparek. “Passive high-power microwave components”. IEEE Trans. on Plasma Science, 30, 755–786 (2002). [CrossRef] [Google Scholar]
  33. G. Junkin, J. Parrón, A. Tennant. “Characterization of an eight-element circular patch array for helical beam modes”. IEEE Trans. on Antennas and Propagation, 67, 7348–7355 (2019). [CrossRef] [Google Scholar]
  34. J.L. Doane. “Polarization converters for circular waveguide modes”. Int. J. Electronics, 61, 1109–1133 (1986). [CrossRef] [Google Scholar]
  35. P. Garin, E. Jedar, G. Jendrzejczak, et al., “Symmetric and non-symmetric modes in a 200 kW, 100 GHz gyrotron”. Conf. Digest 12th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Florida, USA, 194–195 (1987). [Google Scholar]
  36. M. Thumm, A. Jacobs. “In-waveguide TE0,1-to-whispering gallery mode conversion using periodic wall perturbations”. Conf. Digest 13th Int. Conf. on Infrared and Millimeter Waves, Honolulu, Hawaii, USA, 465–466 (1988). [Google Scholar]
  37. M. Thumm, A. Jacobs, and J. Pretterebner. “Generation of rotating high-order TEm,n modes for cold-test measurements on high-power quasi-optical gyrotron output mode converters”. Conf. Digest 15th Int. Conf. on Infrared and Millimeter Waves, Orlando, Florida, USA, 204–206 (1990). [Google Scholar]
  38. Iima, M., M. Sato, J. Amano, et al.. “Measurement of radiation field from an improved efficiency quasi-optical converter for whispering-gallery mode”. Conf. Digest 14th Int. Conf. on Infrared and Millimeter Waves, Proc., SPIE, 1240, Würzburg, Germany, 405–406 (1989). [Google Scholar]
  39. M. Thumm. “High power mode conversion for linearly polarized HE11 hybrid mode output”. Int. J. Electronics, 61, 1135–1153 (1986). [CrossRef] [Google Scholar]
  40. H. Kumric, M. Thumm and R. Wilhelm. “Optimization of mode converters for generating the fundamental TE01 mode from TE06 gyrotron output at 140 GHz”. Int. J. Electronics, 64, 77–94 (1988). [CrossRef] [Google Scholar]
  41. N.L. Aleksandrov, A.V. Chirkov, G.G. Denisov, et al. “Selective excitation of high-order modes in circular waveguides”. Int. J. Infrared and Millimeter Waves, 13, 1369–1385 (1992). [CrossRef] [Google Scholar]
  42. M. Pereyaslavets, O. Braz, S. Kern, et al. “Improvements of mode converters for low-power excitation of gyrotron-type modes”. Int. J. Electronics, 82, 107–115 (1997). [CrossRef] [Google Scholar]
  43. T. Rzesnicki, J. Jin, B. Piosczyk, et al. “Low power measurements on the new RF output system of a 170 GHz, 2 MW coaxial cavity gyrotron”. Int. J. Infrared and Millimeter Waves, 27, 1–11 (2006). [CrossRef] [Google Scholar]
  44. T. Ruess, K.A. Avramidis, M. Fuchs, et al. “Towards fully automated systems for the generation of very high order modes in oversized waveguides”. EPJ Web of Conferences, 195, 01030 (2pp) (2018). [CrossRef] [Google Scholar]